Mirror Toshi的歌詞如下:
歌曲原唱:Mirror Toshi
填詞:Mirror Toshi
I can feel your breath, your skin so cold
Like a memory that's fading away
Your whisper in my ear, it cuts like a knife
Am I losing you for the last time?
You say you're sorry, but it's too late
The fireworks in my heart are fading out
So much to say, but all I can do
Is stand here and watch you walk away
[Chorus]
This is my mirror, I see myself
Through the tears and the laughter and the dreams
I'm holding on, but I'm falling apart
In this moment, I'm just a stranger in your heart
I remember when we were young and free
The promises we made, they seemed so true
But now I'm standing here, alone and lost
In this world without you
[Chorus]
So many nights I've cried, without you by my side
Now I know there's no going back again
But in my heart, there's still a piece of you
That will forever stay with me
[Bridge]
I'll carry on, even if we can't be together
I'll remember all the memories we made
And when the light fades from these tears in my eyes
I'll see you again in my dreams
[Chorus] (x2)
In my dreams, I'll always see you there
Through the tears and the laughter and the dreams
Until we meet again, my love, I'll hold on strong
In my dreams, I'll always find a way to stay求解以下矩陣的逆矩陣(單位矩陣),其中矩陣A為:1 1 -2 -2 -4 -2;3 -4 4 3 7 2;5 -5 8 -3 -5 -4;3 -1 3 -3 4 0.要如何進行操作呢?,單位矩陣是:單位矩陣是對角線上的元素為1的n階矩陣,也就是恆等變換,即對矩陣進行恆等變換後不改變矩陣的秩。請高手幫我解答一下,謝謝。
步驟如下:\n(1)將矩陣A按行分塊為$\begin{matrix} & B= & \left\{ \begin{matrix} *35l1 & \\
\end{matrix} \right.\begin{matrix} & 1 & -2 \\
& -4 & 2 \\
\end{matrix}\text{ } \\
& C= & \left\{ \begin{matrix} *35l3 & -4 \\
\end{matrix} \right.\begin{matrix} & 4 & 3 \\
& 7 & 2 \\
\end{matrix}\text{ } \\
& D= & \left\{ \begin{matrix} *35l5 & -5 \\
\end{matrix} \right.\begin{matrix} & 8 & -3 \\
& -5 & -4 \\
\end{matrix}\text{ } \\
\end{matrix}$;\n(2)求出矩陣B、C、D的行列式值,分別記為detB、detC、detD;\n(3)利用逆矩陣公式$A^{- 1} = \frac{detB \times detC}{detB \times detCdetD - detBdetD \times detC}$計算即可。\n解:$A = \left\{ \begin{matrix} *351 & 1 \\
& - 2 & - 2 \\
& - 4 & 2 \\
\end{matrix} \right.\begin{matrix} & 3 & - 4 \\
& 4 & 3 \\
\end{matrix}\text{ }$,$|B| = | - 4| = - 4$,$|C| = |7| = 7$,$|D| = | - 5| = - 5$;\n$detB = |\begin{matrix} *351 & \\
\end{matrix}| = 1$,$detC = |\begin{matrix} *353 & - 4 \\
\end{matrix}| = - 12$,$detD = |\begin{matrix} *355 & - 5 \\
\end{matrix}| = - 25$;\n$A^{- 1} = \frac{- detB \times detC}{- detB \times detD \times