《invisible war》的歌詞如下:
Verse 1:
The war is invisible
It’s all around us
In the air we breathe
In the things we buy
Chorus:
But we don’t see it
We don’t feel it
It’s a war that’s fought
In our minds and hearts
Verse 2:
The bombs are silent
No sound is heard
Except the ones inside
That we can’t ignore
Chorus:
But we don’t see it
We don’t feel it
It’s a war that’s fought
In our minds and hearts
Bridge:
We must stand up
And speak out loud
This is a war
That we cannot lose
Chorus:
We must see it now
We must feel it too
This is a war
That we must win
Outro:
The war is invisible
But it’s real已知函式f(x) = x^3 - 3x^2 + 9x - 2在區間[a,b]上的值域為[a,b],求a和b的值。
解:因為$f(x) = x^{3} - 3x^{2} + 9x - 2$,所以$f^{\prime}(x) = 3x^{2} - 6x + 9$,令$f^{\prime}(x) = 0$,得$x = 1$或$x = 3$,當$x \in ( - \infty,1)$時,$f^{\prime}(x) < 0$,函式單調遞減;當$x \in (1,3)$時,$f^{\prime}(x) > 0$,函式單調遞增;當$x \in (3, + \infty)$時,$f^{\prime}(x) < 0$,函式單調遞減.所以當$x = 1$時,函式取得極小值$- 2$;當$x = 3$時,函式取得極大值$9$.因為函式在區間$\lbrack a,b\rbrack$上的值域為$\lbrack a,b\rbrack $,所以$a = - 2,b = 9$.所以實數a的值為$- 2$,實數b的值為$9$.