鄭伊健敢作敢為歌詞

《敢作敢為》是鄭伊健主唱的一首歌,由陳少琪填詞,陳光榮作曲,歌曲在1997年發行。

歌詞如下:

沒有人可以 為你做神仙

你的事情 要你自己承擔

其實愛你的人 不必太可憐

想開 會更好 永遠無事亂來

無錯不叫做人 無過就是神仙

學識愛人 定要愛上某人

隨緣來愛人 或者不免痴心

學識愛人 未靠別人指引

不必去等 何必求人施捨愛情

做得到敢作敢為 才值得喝采

做得到敢作敢為 人生才不似白費

別要一拖再拖 空耗青春光陰

錯過了青春年歲 青春不再來

只有 愛到自己 偏不信運氣

然後不肯屈膝 要撲向前飛

知足的心裡 其實我更珍惜愛惜現在的人與事 冇係 我願意自己保護好自己 就放棄纏綿擁抱 心不再虛空徘徊 也終於 可以定下來 把心血澆灌的一堆白開花 花終會開(一起上街教路吧) 在冰冷的深淵當中拚命留戀浪費人生會使自己冰冷的雙手都暖不過來 要看開 我一定學得開心活得自在 不過別問為何氣息漸微 一句珍重愛護愛惜現在的人與事 我係個傻咗嘅好人嘅對得住你 我咁樣樣都好好意思啊冇關係我總可以保護好自己 (千千闋歌)經不起流年,只怕會像霧水交錯幫忙看看這道數學題怎么做?

已知數列{an}的前n項和為Sn,且a1=2,S(n+1)=4an+2,求通項公式an。

解:由$S_{n+1} = 4a_{n} + 2$可得$S_{n} = 4a_{n-1} + 2(n \geqslant 2)$。 所以 $a_{n} = a_{n-1} + 4(n \geqslant 2)$, 可得{a_{n} - a_{n-1}}是首項為a_{1} - a_{2} = 0,公比為4的等比數列。 所以 $a_{n} - a_{n - 1} = (a_{1} - a_{2}) \times 4^{n - 1}$,即$a_{n} = (a_{1} - a_{2}) \times 4^{n - 1} + a_{n - 1}$。 又$a_{1} = 2$,所以$a_{n} = (2 - 0) \times 4^{n - 1} + a_{1}$。 所以 $a_{n} = \left\{ \begin{matrix} ( - \frac{2}{3}) \times ( - \frac{1}{4})^{n - 1},n為奇數 \\

\frac{4}{3},n為偶數 \\

\end{matrix} \right$. 。通項公式an是{$( - \frac{2}{3}) \times ( - \frac{1}{4})^{n - 1}$}和$\frac{4}{3}$的等和數列。即數列{an}通項公式為$a_{n} = \left\{ \begin{matrix} \frac{2}{3}( - \frac{1}{4})^{n - 1},n為奇數 \\

\frac{4}{3},n為偶數 \\

\end{matrix} \right$. 。很抱歉上面出現了錯誤。那么正確的方法應該是怎么做的呢?我需要完整的解題過程。答案是 $\frac{4}{3}$或$\frac{2}{3}( - \frac{1}{4})^{n - 1}$。