西班牙聖誕歌歌詞

西班牙聖誕歌的歌詞如下:

歌曲名:Santa Claus is Coming to Town

歌詞:

Oh, he's making a list

And checking it twice

Gonna find out who's naughty or nice

He's gonna give you a ride

In his big red truck

'Cause he's all jolly and phat

Chorus:

Santa Claus is coming to town

He's gonna make all the kids so happy tonight

Everybody sing along

Santa Claus is coming to town

He sees you when you're sleeping

He knows when you're awake

He knows if you've been good or bad

Oh, he sees you when you're sleeping

He knows when you've been bad

And he's gonna make you wait 'til next year

Chorus:

He's gonna be here with his reindeer friends

The elves and the sleigh bells too

He's gonna give you a gift

So you can be cool

With all the other kids on the block

Bridge:

Oh, don't forget to tell your mom and dad

To make sure they put out some milk for Santa Claus

And some cookies too

Cause he's comin' to town tonight

And he wants it all在三角形ABC中,已知角A,B,C的對邊分別為a,b,c,且滿足(a²+c²)-b²=2accosB. 求角B的大小; 設向量m=(1,sinB),向量n=(sinB,b),向量m平行向量n,求AC的值. 判斷三角形ABC形狀。

【分析】

(1)根據正弦定理及兩角和與差的三角函式公式化簡已知的等式可得$\sin B = \frac{b^{2} + c^{2} - a^{2}}{2bc}$,結合B的範圍可求出B的值;

(2)由向量平行可求出$\sin B = \frac{b}{a}$,再由正弦定理求出$a$的值,再利用餘弦定理可求出$c$的值,從而得出$\bigtriangleup ABC$的形狀.

【解答】

(1)$\because(a^{2} + c^{2}) - b^{2} = 2accosB$,$\therefore$由正弦定理可得,$\sin^{2}B + \sin^{2}C - \sin^{2}B = 2\sin A\cos B$,即$\sin^{2}B + \sin^{2}(A + B) - \sin^{2}B = 0$,$\therefore\sin B(\sin B - \cos B) = 0$,$\because\sin B \neq 0$,$\therefore\cos B = 0$,又$B \in (0,\pi)$,$\therefore B = \frac{\pi}{2}$;

(2)$\because\overset{\longrightarrow}{m}//\overset{\longrightarrow}{n}$,$\therefore\sin B = \frac{b}{a}$,由正弦定理可得:$\frac{a}{\sin A} = \frac{b}{\sin B}$,即$a = \frac{b\sin B}{\sin A}$,$\therefore\frac{b}{a} = \frac{\sin B}{\sin A}$,又$\because\overset{\longrightarrow}{m}//\overset{\longrightarrow}{n}$,$\therefore b = \sin B \cdot a$,由余弦定理可得:$b^{2} = a^{2} + c^{2} - 2ac\cos B$,即$(\sin B)^{2} = (\sin A)^{2} + (\sin C)^{2} - 2\sin A\sin C$,整理可得:$\sin^{2}B = \sin^{2}A + \sin^{2}C - \sin(A + C)$,即$\sin^{2}B = \sin^{2}A + \sin^{2}C - \sin AsinC$,$\therefore\frac{b}{a} = \frac{\sin A}{\cos A}$,即$\frac{b}{a} = \tan A$,又$\because b = \frac{b\sin B}{\sin A}$,$\therefore a = b\tan A$,又$a^{2} + c^{2} = b^{2}$,即$(b\tan A)^{2} + c^{2} = b^{2}$,即$(c - b)(c + b) =